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Abstract We revisit the determination of αS(m2
τ ) using a fit

to inclusive τ hadronic spectral moments in light of (1) the
recent calculation of the fourth-order perturbative coeffi-
cient K4 in the expansion of the Adler function, (2) new
precision measurements from BABAR of e+e− annihilation
cross sections, which decrease the uncertainty in the sep-
aration of vector and axial-vector spectral functions, and
(3) improved results from BABAR and Belle on τ branching
fractions involving kaons. We estimate that the fourth-order
perturbative prediction reduces the theoretical uncertainty,
introduced by the truncation of the series, by 20% with re-
spect to earlier determinations. We discuss to some detail the
perturbative prediction of two different methods: fixed-order
perturbation theory (FOPT) and contour-improved pertur-
bative theory (CIPT). The corresponding theoretical uncer-
tainties are studied at the τ and Z mass scales. The CIPT
method is found to be more stable with respect to the miss-
ing higher order contributions and to renormalization scale
variations. It is also shown that FOPT suffers from con-
vergence problems along the complex integration contour.
Nonperturbative contributions extracted from the most in-
clusive fit are small, in agreement with earlier determina-
tions. Systematic effects from quark-hadron duality viola-
tion are estimated with simple models and found to be within
the quoted systematic errors. The fit based on CIPT gives
αS(m2

τ ) = 0.344±0.005±0.007, where the first error is ex-
perimental and the second theoretical. After evolution to MZ

we obtain αS(M2
Z) = 0.1212 ± 0.0005 ± 0.0008 ± 0.0005,

where the errors are respectively experimental, theoretical
and due to the evolution. The result is in agreement with the
corresponding N3LO value derived from essentially the Z

width in the global electroweak fit. The αS(M2
Z) determina-

tion from τ decays is the most precise one to date.

a e-mail: andreas.hoecker@cern.ch

1 Introduction

The relatively large mass of the τ lepton, its leptonic na-
ture and its decay through weak interaction promotes it to
a particular status for probing the Standard Model (see [1]
for a detailed review, and references therein). In particular,
spectral functions determined from the invariant mass distri-
butions of hadronic τ decays are fundamental quantities de-
scribing the production of hadrons from the nontrivial vac-
uum of strong interactions. They embed similar information
to the one determined from cross sections of e+e− annihi-
lation to hadrons: both kinds of spectral functions are espe-
cially useful at low energies where perturbative QCD fails
to locally describe the data, and where the theoretical under-
standing of the strong interactions remains at a qualitative
level. Due to these limitations on the theoretical side, spec-
tral functions play a crucial role in calculations of hadronic
vacuum polarization contributions to observables such as the
effective electromagnetic coupling at the Z mass, and the
muon anomalous magnetic moment.

Inclusive hadronic quantities, obtained after integrating
over the spectral functions (or directly via the measure-
ment of hadronic or leptonic τ branching fractions), have
been found to be dominated by perturbative contributions
at energies above ∼1 GeV. They can be exploited to pre-
cisely determine the strong coupling constant at the τ -mass
scale, αS(m

2
τ ) [2–5]. More recently, this determination was

reassessed [1] in the light of the existing data on τ decays
and e+e− annihilation.

In the present paper, we update the determination of
αS(m

2
τ ) from hadronic τ decays, motivated by progress per-

formed in two different areas: on the theoretical side, the
perturbative expression of the relevant correlator has been
computed up to fourth order [6], and on the experimen-
tal side, new precision measurements from BABAR of τ

branching fractions involving kaons [7] decrease the uncer-
tainty in the separation of vector and axial-vector spectral
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functions. We utilize this opportunity to analyse several fea-
tures of the theoretical frameworks commonly used to deter-
mine αS(m

2
τ ) in more detail. This concerns the treatments of

the perturbative series, the convergence of the expansions,
and the impact of nonperturbative effects.

In Sect. 2 we describe recent experimental improvement
on the measurements of KKπ decays, the spectral functions
and the τ branching fractions. This is followed in Sect. 3
by a summary of the various theoretical prescriptions used
to extract αS(m

2
τ ) from a fit to data, and a discussion of

their advantages and shortcomings. We also analyse the role
played by nonperturbative contributions in this determina-
tion. In Sect. 4 we exploit the normalization and shape of
the spectral functions to constrain the relevant nonperturba-
tive contributions and to provide an improved determination
of αS(m

2
τ ).

2 Tau hadronic spectral functions

For vector (axial-vector) hadronic τ decay channels V −ντ

(A−ντ ), the nonstrange vector (axial-vector) spectral func-
tion v1 (a1, a0), where the subscript refers to the spin
J of the hadronic system, is derived from the invariant
mass-squared distribution (1/NV/A)(dNV/A/ds) for a given
hadronic mass

√
s, divided by the appropriate kinematic fac-

tor, and normalized to the hadronic branching fraction

v1(s)/a1(s) = m2
τ

6 |Vud |2 SEW

BV −/A−ντ

Be

dNV/A

NV/A ds

×
[(

1 − s

m2
τ

)2(
1 + 2s

m2
τ

)]−1

. (1)

For a0(s), the same expression holds if the term (1+2s/m2
τ )

is removed. Here SEW = 1.0198±0.0006 is a short-distance
electroweak correction [8, 9], BV −/A−ντ

(Be) denotes the in-
clusive τ → V −/A−(γ )ντ (τ → e−νeντ ) branching frac-
tion (throughout this letter, final state photon radiation is ac-
counted for in the τ branching fractions). We use universal-
ity in the leptonic weak charged currents and the measure-
ments of Be, Bμ and the τ lifetime, to obtain the improved
branching fraction Be = Buni

e = (17.818 ± 0.032)% [1]. We
also use mτ = (1776.90 ± 0.20)MeV [10] and |Vud | =
0.97418±0.00019 [11] (assuming CKM unitarity). Integra-
tion of the spectral function over the τ phase space leads to
the inclusive τ hadronic width, expressed through the ratio

Rτ,V/A = BV −/A−ντ

Be

. (2)

By unitarity and analyticity the spectral functions are
connected to the imaginary part of the two-point correlation

function, Π
μν
ij,U (q), for time-like momenta-squared q2 > 0,

Π
μν
ij,U (q) ≡ i

∫
d4x eiqx〈0|T (U

μ
ij (x)Uν

ij (0)†)|0〉

= (−gμνq2 + qμqν)Π
(1)
ij,U (q2)

+ qμqν Π
(0)
ij,U (q2), (3)

where U = A,V denotes the nature of the relevant cur-
rents, either vector (U

μ
ij = V

μ
ij = qjγ

μqi) or axial-vector

(Uμ
ij = A

μ
ij = qjγ

μγ5qi ) charged colour-singlet quark cur-
rents. By Lorentz decomposition, the correlation functions
can be split into their J = 1 and J = 0 parts.

In the complex s = q2 plane, the polarization functions
Π

μν
ij,U (s) are expected to exhibit a very simple analytic struc-

ture, the only nonanalytic features being along the real axis:
a branch cut for all polarization functions, and a pole at the
pion (kaon) mass for a0. The imaginary part of the polar-
ization functions on the branch cut is linked to the spectral
functions defined in (1), for nonstrange (strange) quark cur-
rents

ImΠ
(1,0)
ud(s),V/A(s) = 1

2π
v1/a1,0(s), (4)

which provide the basis for comparing a theoretical descrip-
tion of strong interaction with hadronic data.

Experimentally, the total hadronic observable Rτ ,

Rτ = Rτ,V + Rτ,A + Rτ,S, (5)

where Rτ,S denotes the hadronic width to final states with
net strangeness, is obtained from the measured leptonic
branching ratios,

Rτ = 1 − Be − Bμ

Be

= 1

Buni
e

− 1.9726 = 3.640 ± 0.010. (6)

2.1 New input to the vector/axial-vector separation

The separation of vector and axial-vector components is
straightforward in the case of hadronic final states with only
pions using G-parity, provided that isospin symmetry holds.
An even number of pions has G = 1 corresponding to vec-
tor states, while an odd number of pions has G = −1, which
tags axial-vector states. Modes with a KK pair are not in
general eigenstates of G-parity and contribute to both V and
A channels. While the decay to K−K0 is pure vector, addi-
tional information is required to separate the KKπ and the
rarer KKππ modes. For the latter channel an axial-vector
fraction of 0.5 ± 0.5 is used [1].

Until recently, there was some confusion on this issue for
the KKπ modes:
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1. In the ALEPH analysis of τ decay modes with kaons [12],
an estimate of the vector contribution was obtained us-
ing the e+e− annihilation data from DM1 [13] and
DM2 [14] in the KKπ channel, extracted in the I = 1
state. This contribution was found to be small, and, us-
ing the conserved vector current (CVC), a branching
fraction of BCVC(τ → ντ (KKπ)V ) = (0.26 ± 0.39) ·
10−3, was found, corresponding to an axial fraction of
fA,CVC(KKπ) = 0.94+0.06

−0.08.
2. The ALEPH CVC result was corroborated by a partial-

wave and lineshape analysis of the a1 resonance from τ

decays in the ντπ
−2π0 mode performed by CLEO [15].

The effect of the K�K decay mode of the a1 was seen
through unitarity and a branching fraction of B(a1 →
K�K) = (3.3 ± 0.5)% was derived. With the known
τ− → ντ a

−
1 branching fraction, this value more than sat-

urates the total branching fraction available for the KKπ

channel, yielding an axial fraction of fA,a1(KKπ) =
1.30 ± 0.24.

3. Another piece of information, also contributed by CLEO
[16], but conflicting with the two previous results, is
based on a partial-wave analysis in the K−K+π− chan-
nel using two-body resonance production and including
many possible contributing channels. A much smaller ax-
ial fraction of fA,KKπ(KKπ) = 0.56 ± 0.10 was found
here.

Since the three determinations are inconsistent, the value
fA = 0.75 ± 0.25 has been used previously to account for
the discrepancy [1]. This led to a systematic uncertainty in
the V,A spectral functions that competed with the purely
experimental uncertainties.

Precise cross section measurements for e+e− annihila-
tion to K+K−π0 and to K0K±π∓ have been recently pub-
lished by the BABAR Collaboration [7], using the method of
radiative return. In the mass range of interest for τ physics
they show strong dominance of K�(890)K dynamics and a
fit of the Dalitz plot yields a clean separation of the I = 0,1
contributions. Assuming CVC, the mass distribution of the
vector final state in the decays τ → ντKKπ can be ob-
tained. The result is shown in Fig. 1 and compared with the
full τ spectrum from ALEPH [12] summing up the contribu-
tions from the K−K+π−, K0K0π−, and K−K0π0 modes.
The BABAR results reveal a small vector component. After
integration, one obtains

fA,CVC(KKπ) = 0.833 ± 0.024, (7)

which is about 1.3σ lower than the ALEPH determination
using the same method (but with much poorer e+e− input
data) and 2.7σ higher than the CLEO partial-wave-analysis
result. The new determination has a precision that exceeds
the previously used value by an order of magnitude, thus
effectively reducing the uncertainties in the vector and axial-
vector spectral functions to the experimental errors only.

Fig. 1 The mass-squared distribution for τ → ντ KKπ decay modes
from ALEPH and the predictions for the vector component obtained
by CVC using DM1, DM2 and BABAR e+e− data

One notices from Fig. 1 that the axial fraction varies
versus the KKπ mass, with lower masses being further
axial-enhanced. The observed axial-vector dominance is at
variance with several estimates such as fA ∼ 0.10 [17],
0.37 [18], obtained within the Resonance Chiral Theory,
which attempts at incorporating massive vector and axial
resonances decaying into light mesons into a framework
inspired by chiral and large-Nc arguments. On the other
hand, this axial-vector dominance is closer to the predic-
tion fA ∼ 0.71, based on a model combining axial-vector
and vector resonances of finite widths with a leading-order
chiral Lagrangian [19].

In deriving (7) care was taken to include a small contri-
bution from the φπ final state, observed by BABAR in the
same analysis [7]. Since BABAR also published a τ− →
ντφπ− branching fraction measurement [20], it is possible
to perform a test of CVC in this channel with

BCVC(τ → ντφπ−) = (3.8 ± 0.9 ± 0.2) × 10−5, (8)

Bτ (τ → ντφπ−) = (3.42 ± 0.55 ± 0.25) × 10−5, (9)

for which we find agreement within the quoted statistical
and systematic errors. For comparison the dominant CVC
τ → ντK

�(890)K branching fraction is (7.3 ± 0.6 ± 0.4) ×
10−4.

2.2 Update on the branching fraction for strange decays

New measurements of τ strange decays have been pub-
lished since our last compilation [1]. This is the case
for the hadronic channels Kπ0 [21], KSπ− [22], and
K−π+π− [7]. Also using the more precise estimate from
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Fig. 2 Vector (V ), axial-vector (A), V + A and V − A τ hadronic
spectral functions measured by ALEPH, and updated using the new
V,A separation in the KKπ channels discussed in the text. The shaded

areas indicate the main contributing exclusive τ decay channels. The
curves show the predictions from the parton model (dotted) and from
massless perturbative QCD using αS(M

2
Z) = 0.120 (solid)

universality for the K− channel [1], the updated value of
Rτ,S becomes

Rτ,S = 0.1615 ± 0.0040, (10)

replacing the previous value of 0.1666 ± 0.0048 [1].
Using the new fA(KKπ) value (7), the updated hadronic

widths Rτ,V/A from ALEPH, slightly renormalized so that
their sum agrees with the new average for Rτ,V +A obtained
from (6) and (10) read

Rτ,V = 1.783 ± 0.011 ± 0.002, (11)

Rτ,A = 1.695 ± 0.011 ± 0.002, (12)

Rτ,V +A = 3.479 ± 0.011, (13)

Rτ,V −A = 0.087 ± 0.018 ± 0.003, (14)

where the first errors are experimental and the second due to
the V/A separation, now dominated by the KKππ channel.

The ALEPH spectral functions are updated accordingly
and shown in Fig. 2 for respectively vector, axial-vector, V +
A and V − A.

3 Theoretical prediction of Rτ

Tests of QCD and the precise measurement of the strong
coupling constant αS at the τ mass scale [2–5], carried out
first by the ALEPH [23] and CLEO [24] collaborations, have
triggered many theoretical developments. They concern pri-
marily the perturbative expansion for which different opti-
mized rules have been suggested. Among these are contour-
improved (resummed) fixed-order perturbation theory [26–
28], effective charge and minimal sensitivity schemes [29–
33], the large-β0 expansion [34–36], as well as combinations
of these approaches. Their main differences lie in how they
deal with the fact that the perturbative series is truncated at
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an order where the missing part is not expected to be small.
While a review and discussion of the various approaches can
be found in [1], we only recall some of their salient features
in the following.

With the publication of the full vector and axial-vector
spectral functions by ALEPH [37, 38] and OPAL [25] it be-
came possible to directly study the nonperturbative proper-
ties of QCD through V − A sum rules and through fits to
spectral moments computed from weighted integrals over
the spectral functions (we refer again to the discussions
in [1]). Inclusive observables like Rτ can be accurately pre-
dicted in terms of αS(m

2
τ ) using perturbative QCD, and

including small nonperturbative contributions within the
framework of the Operator Product Expansion (OPE) [39–
41].

3.1 Operator product expansion

According to (4), the absorptive (imaginary) parts of the
vector and axial-vector two-point correlation functions
Π

(J)
ud,V/A(s), with the spin J of the hadronic system, are

proportional to the τ hadronic spectral functions with cor-
responding quantum numbers. The nonstrange ratio Rτ,V +A

can be written as an integral of these spectral functions over
the invariant mass-squared s of the final state hadrons [4]

Rτ,V +A(s0)

= 12πSEW|Vud |2
s0∫

0

ds

s0

(
1 − s

s0

)2

×
[(

1 + 2
s

s0

)
ImΠ(1)(s + iε) + ImΠ(0)(s + iε)

]
,

(15)

where Π(J) can be decomposed as Π(J) = Π
(J)
ud,V + Π

(J)
ud,A.

We work in the chiral limit1 to study the perturbative contri-
bution, so that the lower integration limit is zero because
of the pion pole at zero mass. The correlation function
Π(J) is analytic in the complex s plane everywhere except
on the positive real axis where singularities exist. Hence
by Cauchy’s theorem, the imaginary part of Π(J) is pro-
portional to the discontinuity across the positive real axis,
and the integral (15) can be replaced by a contour integral
over Π(s) running counter-clockwise around the circle from
s = s0 + iε to s = s0 − iε.

The energy scale s0 = m2
τ is large enough that contribu-

tions from nonperturbative effects are expected to be sub-
dominant and the use of the Operator Product Expansion is
appropriate. The latter is expected to yield relevant results

1Vector and axial-vector currents are conserved in the chiral limit, so

that sΠ
(0)
V = sΠ

(0)
A = 0.

in the deep Euclidean region where s is large and negative,
whereas the extension to other regions in the complex plane
is questionable. Fortunately, in the case of Rτ , the kine-
matic factor (1 − s/s0)

2 suppresses the contribution from
the region near the positive real axis where Π(J)(s) has a
branch cut and the validity of the OPE is doubtful due to
large quark-hadron duality violations [42, 43].

The OPE of the vector and axial-vector ratio Rτ,V/A can
be written as

Rτ,V/A = 3

2
SEW|Vud |2

×
(

1 + δ(0) + δ′
EW + δ

(2,mq)

ud,V/A +
∑

D=4,6,...

δ
(D)
ud,V/A

)
,

(16)

with the massless universal2 perturbative contribution δ(0),
the residual nonlogarithmic electroweak correction δ′

EW =
0.0010 [46] (cf. the discussion on radiative corrections
in [1]), and the dimension D = 2 perturbative contribution

δ
(2,mq)

ud,V/A from massive quarks. The term δ(D) denotes the
OPE contributions of mass dimension D [5]

δ
(D)
ud,V/A =

∑
dimO=D

C′
V/A(s0,μ)

〈OD(μ)〉V/A

s
D/2
0

, (17)

where δ
(D)
ud,V +A = 1

2

(
δ
(D)
ud,V + δ

(D)
ud,A

)
. In practice, the OPE

provides a separation between short and long distances by
following the flow of a large incoming momentum. The
scale parameter μ separates the long-distance nonperturba-
tive effects, absorbed into the vacuum expectation value of
the operators 〈OD(μ)〉, from the short-distance effects that
are included in the coefficients CV/A(s,μ), which become
C′

V/A(s0,μ) after performing the integration (15). The vac-
uum expectation values 〈OD(μ)〉 encode information on the
nonperturbative features of QCD vacuum and its effects on
the propagation of quarks: they cannot be computed from
first principles and have to be extracted from data. The short-
distance coefficients CV/A(s,μ) can be determined within
perturbative QCD.

3.2 Perturbative contribution to fourth order in αS

Rτ is a doubly inclusive observable since it is the result of
an integration over all hadronic final states at a given invari-
ant mass and further over all masses between mπ and mτ .
The scale mτ lies in a compromise region where αS(m

2
τ )

is large enough so that Rτ is sensitive to its value, yet still
small enough so that the perturbative expansion converges

2In the chiral limit of vanishing quark masses the contributions from
vector and axial-vector currents coincide to any given order of pertur-
bation theory and the results are flavor independent.
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safely and nonperturbative power terms are small. The pre-
diction for Rτ is thus found to be dominated by the lowest-
dimension term in (17), i.e., the term obtained from a per-
turbative computation of the correlator Π .

For the evaluation of the perturbative series, it is conve-
nient to introduce the analytic Adler function [48] D(s) ≡
−s · dΠ(s)/ds, which avoids extra subtractions that are un-
related to QCD dynamics. The function D(s) calculated in
perturbative QCD within the MS renormalization scheme is
a function of αS and depends on the renormalization scale
μ, occurring through ln(μ2/s). Since D(s) is connected to
a physical quantity, the spectral function ImΠ(s), it cannot
depend on the choice of the renormalization scale μ. This is
achieved through the cancellation of the μ-dependence of αS

and of the explicit occurrences of μ in D. Nevertheless, in
the realistic case of a series truncated at a given order in αS

our knowledge of the renormalization scale dependence is
imperfect, i.e., D depends on μ, thus inducing a systematic
uncertainty.

To introduce the Adler function in (15), one uses partial
integration, giving

1 + δ(0) = −2πi

∮
|s|=s0

ds

s
w(s)D(s), (18)

where w(s) = 1 − 2s/s0 + 2(s/s0)
3 − (s/s0)

4. The pertur-
bative expansion of D(s) reads

D(s) = 1

4π2

∞∑
n=0

K̃n(ξ)an
s (−ξs), (19)

with as ≡ αS/π , and where the dimensionless factor ξ para-
metrizes the renormalization scale ambiguity. While the co-
efficients K0,1 = K̃0,1 = 1 are universal (we use the notation
Kn = K̃n(ξ = 1) in the following), the K̃n≥2 depend on the
renormalization scheme and scale used. Powerful compu-
tational techniques have recently allowed to determine K4.
The authors of [6] exploited the dependence of the four-
loop master integrals (used to express all relevant four-loop
integrals with massless propagators) on the space-time di-
mension to compute the integrals to the required accuracy.
For nf = 3 quark flavors and ξ = 1 one has3 K2 � 1.640,
K3 � 6.371 and K4 � 49.08 [6, 49–53]. The full expres-
sions for the functions K̃n(ξ) for arbitrary ξ up to order
n = 5 can be found in [1].

3The numerical expressions for an arbitrary number of quark flavors
(nf ) in the MS renormalization scheme for ξ = 1 are: K0 = 1, K1 = 1,
K2 � 1.9857 − 0.1153nf , K3 � 18.2428 − 4.2158nf + 0.0862n2

f ,

and K4 � 135.7916 − 34.4402nf + 1.8753n2
f − 0.0101n3

f .

With the series (19), inserted into the r.h.s. of (18), one
obtains the perturbative expansion

δ(0) =
∞∑

n=1

K̃n(ξ)A(n)(as), (20)

with the functions [26]

A(n)(as) = 1

2πi

∮
|s|=s0

ds

s
w(s)an

s (−ξs)

= 1

2π

π∫
−π

dϕ w(−s0e
iϕ)an

s (ξs0e
iϕ). (21)

Similarly, the Adler function also serves to obtain the per-
turbative expansion of the inclusive e+e− annihilation cross
section ratio

Re+e−(s) = σ(e+e− → hadrons (γ ))

σ (e+e− → μ+μ−)

= −6πi
∑
f

Q2
f

∮
|s′|=|s|

ds′ · D(s′)
s′ . (22)

Evaluating the contour integral in fixed-order perturbation
theory (cf. Sect. 3.2.1) with nf = 5 active quark flavors, and
inserting all known coefficients, gives4

R
(5)

e+e−(s)

= 3
∑

f
Q2

f

[
1 + as(s) + 1.4092a2

s (s) − 12.7673a3
s (s)

− 79.9795a4
s (s) + (K5 + 79.7306) a5

s (s)

+ (K6 + 2202.78) a6
s (s) + . . .

]
. (23)

3.2.1 Fixed-order and contour-improved perturbation
theory

The standard perturbative method to compute the contour in-
tegral consists of expanding all the quantities up to a given
power of as(s0). The starting point is the solution of the

4The explicit formula reads:

Re+e− (s) = 3
∑
f

Q2
f

[
1 + as(s) + K2 a2

s (s) +
(

K3 − 1

3
π2β2

0

)
a3
s (s)

+
(

K4 − 5

6
π2β0β1 − K2π

2β2
0

)
a4
s (s)

+
(

K5 − 1

2
π2β2

1 − π2β0β2 − 7

3
π2β0β1K2

− 2π2β2
0K3 + 1

5
π4β4

0

)
a5
s (s) + . . .

]
.
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renormalization group equation (RGE) for as(s), which is
expanded in a Taylor series of η ≡ ln(s/s0) around the ref-
erence scale s0 [1]

as(s) = as − β0ηa2
s +

(
−β1η + β2

0η2
)

a3
s

+
(

−β2η + 5

2
β0β1η

2 − β3
0η3

)
a4
s

+
(

−β3η + 3

2
β2

1η2 + 3β0β2η
2

− 13

3
β2

0β1η
3 + β4

0η4
)

a5
s

+
(

−β4η + 7

2
β1β2η

2 + 7

2
β0β3η

2 − 35

6
β0β

2
1η3

− 6β2
0β2η

3 + 77

12
β3

0β1η
4 − β5

0η5
)

a6
s + O(η6;a7

s ).

(24)

Here the series has been reordered in powers of as ≡ as(s0)

and we use the RGE β-function5 as defined in [54, 55].
Computing the contour integral (21), and ordering the

contributions according to their powers in as , leads to
the familiar expression for fixed-order perturbation theory
(FOPT) [26]

δ(0) =
∞∑

n=1

[K̃n(ξ) + gn(ξ)]an
s (ξs0), (25)

where the gn are functions of K̃m<n and βm<n−1, and of el-
ementary integrals with logarithms of power m < n in the
integrand. Setting ξ = 1 and replacing all known βi coeffi-
cients by their numerical values for nf = 3 gives [1, 56]

δ(0) = as(s0) + (K2 + 3.5625) a2
s (s0)

+ (K3 + 19.995) a3
s (s0)

+ (K4 + 78.003) a4
s (s0) + (K5 + 307.787) a5

s (s0)

+ (K6 + 17.813K5 + 1.5833β4 − 5848.19) a6
s (s0),

(26)

where for the purpose of later studies we have kept terms up
to sixth order.

The FOPT series is truncated at a given order despite the
fact that parts of the higher coefficients gn>4(ξ) are known

5The full expressions for an arbitrary number of quark flavors (nf )
are: β0 = 1

4 (11 − 2
3 nf ), β1 = 1

16 (102 − 38
3 nf ), β2 = 1

64 ( 2857
2 −

5033
18 nf + 325

54 n2
f ), and β3 = 1

256 [ 149753
6 + 3564 ζ3 − ( 1078361

162 +
6508

27 ζ3)nf + ( 50065
162 + 6472

81 ζ3)n
2
f + 1093

729 n3
f ], where the ζi={3,4,5} =

{1.2020569,π4/90,1.0369278} are the Riemann ζ -functions. The
βn≥4 are unknown.

and could be resummed: these are the higher order terms
of the as(s) expansion that are functions of βn≤3 and Kn≤4

only. Moreover, at each integration step, the expansion (24)
with respect to the physical value as(s0) is used to predict
as(s) on the entire |s| = s0 contour. This might not always
be justified, and leads to systematic errors as discussed in
Sect. 3.2.3.

A more accurate approach to the solution of the con-
tour integral (21) is to perform a direct numerical evalu-
ation by step-wise integration. At each integration step, it
takes as input for the running as(s) the solution of the RGE
to four loops, computed using the value from the previous
step [26–28]. It implicitly provides a partial resummation
of the (known) higher order logarithmic contributions, and
does not require the validity of the as(s) Taylor series for
large absolute values of the expansion parameter η. This nu-
merical solution of (20) is referred to as contour-improved
perturbation theory (CIPT).

3.2.2 Alternative perturbative expansions

Inspired by the pioneering work in [29–33] the effec-
tive charge approach to the perturbative prediction of Rτ

(ECPT) has triggered many studies [57–60]. The advocated
advantage of this technique is that the perturbative predic-
tion of the effective charge is renormalization scheme and
scale invariant since it is a physical observable. The effec-
tive τ charge is defined by aτ = δ(0). The ECPT scheme has
been used in the past to estimate the unknown higher-order
perturbative coefficient K4, by exploiting the mediocre con-
vergence of the series (because aτ (m

2
τ ) � 1.8 · as(m

2
τ )). As

pointed out in [6], these estimates missed the actual value
of K4 by approximately a factor of two. One reason for this
disagreement may come from the fact that these methods
neglected the contributions from the next higher and also
unknown orders. Owing to the insufficient convergence, the
uncertainty on the coefficient estimate introduced by this
neglect is significant and exceeds the errors quoted [1].

For completeness we also mention the large-β0 expan-
sion, which is an approximation to the full FOPT result
assuming the dominance of the [β0as(−s)]n term. It is
thus possible to derive estimates for the FOPT coefficients
of a given perturbative series at all orders by neglecting
higher order terms in the β-function. The large-β0 expan-
sion corresponds to inserting chains of fermion loops into
the gluon propagators and to determining the impact on the
quark-antiquark vacuum polarization. The procedure pro-
vides hence a naive non-abelianization of the theory, be-
cause the lowest-order radiative corrections do not include
gluon self-coupling. As an illustration, the Rτ FOPT se-
ries (25) can be expanded as δ(0)(s) = as

∑
n=0 an

s (dnβ
n
0 +

δn), where dnβ
n
0 + δn = Kn+1 + gn+1 (setting ξ = 1). The
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coefficients dn are computed in terms of fermion bubble di-
agrams [61], where they are identified with their leading-

nf pieces d
[n]
n in the expression dn = d

[n]
n nk

f + · · · + d
[0]
k .

Neglecting the corrections δn, the above series leads to the
large-β0 expansion of δ(0). The first elements of the se-
ries are [62]: d0 = 1, d1β0 = 5.119, d2β

2
0 = 28.78, d3β

3
0 =

156.6, d4β
4
0 = 900.9, d5β

5
0 = 4867. They compare reason-

ably well with the FOPT terms (26) where these are known,
in particular the large size of the fourth-order term has been
anticipated (K4 ∼ 79). However, it turns out that the esti-
mated coefficients of the Adler series itself (before integra-
tion on the contour) do not compare well with the exact so-
lutions, which emphasizes the uncontrolled theoretical un-
certainties associated with this method [1].

3.2.3 Comparing perturbative methods

This section updates and completes the discussion given in
Sects. 3 and 8 of [1], including here the known value of the
fourth-order perturbative coefficient in the Adler function,
K4 [6]. We perform a numerical study of the FOPT and
CIPT approaches to expose the differences between these
two methods. Both use the Taylor series (24), and they as-
sume that one can perform an analytic continuation of the
solution of the RGE for complex values of s,6 namely along
the circular contour of integration in (21). One should thus
make sure that the series is used only inside the domain of
good convergence. As one approaches the limit of this do-
main, the error induced by the finite Taylor series increases.
For CIPT the convergence is guaranteed because the inte-
gration proceeds along infinitesimal steps such that |η| � 1
everywhere. The situation is more complicated for FOPT as
the absolute value of η in (24) approaches π close to the
branch cut.

The tests carried out here use the expansion (24) to sixth
order in as(s0) (hence fifth order in η = ln(s/s0))—if not
stated otherwise, with estimates for K5,6 and β4 assum-
ing a geometric growth of the corresponding series (i.e.,
K5(6) = K4(5)(K4(5)/K3(4)) and β4 = β3(β3/β2)), and set-
ting all coefficients at higher-orders than these to zero.

Taylor series

To check the stability of the results obtained with FOPT,
we consider a variant (denoted FOPT++) where all known
or estimated terms of order ηn≤5 are kept (i.e., including
the known expressions with powers an=7

s (s0) and beyond),
which should reduce the error associated with the use of the
Taylor expansion in FOPT. Figure 3 shows the evolution of

6One of the first limits of this hypothesis shows up in the discontinuity
of the imaginary part of αS at φ = ±π , which is due to the cut of the
logarithm in the complex plane.

Fig. 3 Real part of αS(s) computed along the |s| = s0 contour for
ξ = 1, using respectively FOPT++(solid line, see text), FOPT and
FOPT+(dashed, see text) and CIPT (dashed-dotted)

the real part of αS(s) along the integration circle as found
for CIPT, FOPT and FOPT++. As expected, the values for
CIPT and FOPT(++) agree in the region around φ = 0 (the
fix-point of the expansion in FOPT(++)), but significant dis-
crepancies occur elsewhere. For FOPT++ we find large val-
ues for Re(αS) close to the branch cut. Estimating the con-
vergence speed of the η series (24) reveals that it is slower
for FOPT++, where larger powers of as are kept, than for
FOPT, for which the series is truncated at a6

s . Including
higher orders ηn>5 in FOPT++ we find that these terms
dominate the value of Re(αS) near the branch cut, leading to
large deviations from the correct evolution, which rise with
the order n. On the contrary, for CIPT performed with infin-
itesimal integration steps, the full five-loop RGE solution is
equivalent to (24), i.e., CIPT = CIPT++.7

Although the values of αS differ significantly on half of
the integration domain, the standard FOPT and CIPT meth-
ods give similar results for the integral. This is because the
integration kernel (18) vanishes for s = −s0 (φ = ±π ), sup-
pressing the contributions to the integral coming from the re-
gion near the branch cut.8 The main difference between the

7To understand this feature, one can compare the errors induced by the
Taylor approximation for the FOPT and CIPT numerical procedures
along the circular contour. To compute the contour integral, N � 1
equidistant integration points along the contour are added. At the j th

point, the error on the value of αS is given directly by (24) for FOPT,
whereas one can easily show that it is reduced by the factor j/Nn+1 for
CIPT, where n = 5 is the expansion order in η. Therefore, the error on
the contour integral coming from the determination of αS is suppressed
by 1/Nn in the case of CIPT compared to FOPT.
8In addition, a significant cancellation takes place in this region: for
FOPT, the contribution of the contour integral vanishes on the intervals
[−π;−1.73] and [1.73;π], whereas for CIPT a vanishing contribution
comes from [−π;−1.57] and [1.57;π].
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Fig. 4 Real part of (4π2D(s) − 1) (left) and of the integrand in (21)
and (20) (right), computed along the integration contour for ξ = 1, us-
ing respectively FOPT++ (solid line), FOPT (dashed), CIPT (dashed-

dotted) and FOPT+ (dotted, not shown on the right hand plot because
it is almost indistinguishable from CIPT)

two results stems from the regions φ ≈ ±2.1 and φ ≈ ±1
(cf. left-hand plot of Fig. 4). In the region |φ| < 1, the val-
ues of αS(s) estimated by the two methods are close, and the
difference between the two integrands can be ascribed to the
truncation at the sixth order in as(s0) for the integrand of
FOPT.

Fixed-order truncation

In addition to employing a Taylor series in a region with
questionable convergence properties, FOPT truncates the
full expression of the contour integral in (25). To disentangle
the impact of these two approximations, we have tested an-
other variant of FOPT (denoted FOPT+), where (24) is used
as is, but without truncating the Adler function (or equiva-
lently δ(0)) at the sixthorder in as(s0). This method leads to a
similar integrand as in CIPT, with however the usual differ-
ence in the evolution. The left-hand plot of Fig. 4 shows the
evolution of the real part of (4π2D(s)−1) along the contour
for all methods. FOPT+ and CIPT differ close to the branch
cut as a consequence of the deficient Taylor approximation,
with however little difference in the integration result [1] due
to the suppression by the integration kernel. The FOPT++
approach without truncating the Adler function leads to a
δ(0) that lies between CIPT and FOPT, with however unsta-
ble numerical dependence on the largest power in η kept in
the Taylor series.

Numerical comparisons

Table 1 summarizes the contributions of the orders n ≤ 6
in PT to δ(0) for FOPT, CIPT and the large-β0 expan-

sion,9 using as benchmark value αS(m
2
τ ) = 0.34, and ξ = 1.

For systematic studies we vary ξ in the range ξ · m2
τ =

m2
τ ± 2 GeV2, and the maximum observed deviations with

respect to ξ = 1 are reported in the corresponding lines of
Table 1. We assume a geometric growth of the perturba-
tive terms for all unknown PT and RGE coefficients, with
100% uncertainty assigned to each of them for the pur-
pose of illustration. We recall that the n-th contributions
to the FOPT and CIPT series should be compared with
care. Whereas the FOPT contributions can be directly ob-
tained from (25), the entanglement of the different perturba-
tive orders generated by CIPT prevents us from separating
the contributions in powers of as(s0). Instead, the columns
given for CIPT in Table 1 correspond to the terms in (20).
If the two methods were equally well suited for the inte-
gration, their column sums should converge to the same
value.

The variations of δ(0) with the scale parameter ξ are
strongly non-linear (cf. the asymmetric errors in Table 1 and
the functional forms plotted for FOPT (left) and CIPT (right)
in Fig. 5). CIPT exhibits significantly less renormalization
scale dependence than FOPT at order n = 4, while the inter-
pretation of the subsequent orders strongly depends on the
values used for the unknown coefficients Kn≥5.

Conclusions

The CIPT series is found to be better behaved than FOPT
and is therefore to be preferred for the numerical analy-
sis of the τ hadronic width. This preference is also sup-

9We do not include ECPT into the present study, because—as con-
cluded in [1]—the convergence of the perturbative series is insufficient
for a precision determination of αS(m

2
τ ).
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Table 1 Massless perturbative contribution δ(0) in Rτ using FOPT,
CIPT and the large-β0 expansion, respectively, and computed for
αS(m

2
τ ) = 0.34. The unknown higher-order K5,6 and β4 coefficients

are estimated by assuming a geometric growth (see text), while the re-
maining ones are set to zero. The quoted uncertainties δ correspond to
the indicated error ranges

Pert. method n = 1 n = 2 n = 3 n = 4 (n = 5) (n = 6)
∑4

n=1
∑5

n=1
∑6

n=1

FOPT (ξ = 1) 0.1082 0.0609 0.0334 0.0174 0.0101 0.0067 0.2200 0.2302 0.2369

δ(β4 ± 100%) 0 0 0 0 0 ±0.0006 0 0 ±0.0006

δ(K5 ± 100%) 0 0 0 0 ±0.0056 ±0.0108 0 ±0.0056 ±0.0164

δ(K6 ± 100%) 0 0 0 0 0 ±0.0047 0 0 ±0.0047

δ(ξ ± 0.63) – – – – – – +0.0317
−0.0151

+0.0209
−0.0119

+0.0152
−0.0095

CIPT (ξ = 1) 0.1476 0.0295 0.0121 0.0085 0.0049 0.0020 0.1977 0.2027 0.2047

δ(β4 ± 100%) ∓0.0003 ∓0.0001 ∓0.0001 ∓0.0001 ∓0.0001 ∓0.0001 ∓0.0006 ∓0.0007 ∓0.0008

δ(K5 ± 100%) 0 0 0 0 ±0.0049 0 0 ±0.0049 ±0.0049

δ(K6 ± 100%) 0 0 0 0 0 ±0.0020 0 0 ±0.0020

δ(ξ ± 0.63) – – – – – – +0.0032
−0.0051

+0.0005
−0.0044

+0.0001
−0.0079

Large-β0 expansion 0.1082 0.0600 0.0364 0.0215 0.0134 0.0078 0.2261 0.2395 0.2473

Fig. 5 Scale dependence of δ(0) in Rτ computed at the third to the estimated sixth order with FOPT (left) and CIPT (right)

ported by the analysis of the integrand in the previous sec-
tion, suggesting a pathological behavior of FOPT for as

near the branch cut. Our coarse extrapolation of the higher-
order coefficients could indicate that minimal sensitivity is
reached at n ∼ 5 for FOPT, while the series further con-
verges for CIPT. The uncertainties due to K5 and K6 are
smaller for CIPT whereas the one due to the unknown value
of β4 is similar in both approaches. The difference in the
result observed when using a Taylor expansion and truncat-
ing the perturbative series after integrating along the con-
tour (FOPT) with the exact result at given order (CIPT)
exemplifies the incompleteness of the perturbative series.
The situation is even worse since, not only large known
contributions are neglected in FOPT, but the series is also
used in a domain where its convergence is not guaranteed:

taking the difference between CIPT and FOPT as an esti-
mate of the related systematic error overestimates the un-
certainty due to the truncation of the perturbative series.
In the line of this discussion, and following [1], we will
not use this prescription to estimate the systematic error on
the truncation of the series, and we will limit the analy-
sis to the uncertainties coming from the study of CIPT
only.

The discrepancies found between FOPT and CIPT at
|s| = m2

τ are reduced drastically when computing

R
(5)

e+e−(M2
Z) (see Fig. 6 and Table 2). The small value of

αS(M
2
Z) ensures a much better convergence of the per-

turbative series. The better convergence also leads to a
tiny scale dependence, which is even smaller for CIPT
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Fig. 6 Scale dependence of δ(0) in R
(5)

e+e− (M2
Z) computed at the third to the estimated sixth order with FOPT (left) and CIPT (right)

Table 2 Massless perturbative contributions to δ(0) in R
(5)

e+e− (M2
Z) us-

ing FOPT and CIPT, respectively, and computed for αS(M
2
Z) = 0.12.

The unknown higher-order K5,6 and β4 coefficients are estimated by

assuming a geometric growth, while the others are set to 0. The quoted
uncertainties δ stem from the indicated range of values for the unknown
parameters and from the renormalization scale

Pert. method n = 1 n = 2 n = 3 n = 4 (n = 5) (n = 6)
∑4

n=1
∑5

n=1
∑6

n=1

FOPT (ξ = 1) 0.038197 0.002056 −0.000712 −0.000170 −0.000004 0.000012 0.039372 0.039368 0.039380

δ(β4 ± 100%) 0 0 0 0 0 0 0 0 0

δ(K5 ± 100%) 0 0 0 0 ∓10−5 0 0 ∓10−5 ∓10−5

δ(K6 ± 100%) 0 0 0 0 0 ±5 × 10−6 0 0 ±5 × 10−6

δ(ξ ± 0.63) – – – – – – +29
−40 × 10−6 +7.4

−0.3 × 10−6 +6.7
−1.9 × 10−6

CIPT (ξ = 1) 0.037462 0.001941 −0.000034 0.000016 −0.000008 0.000003 0.039385 0.039378 0.039381

δ(β4 ± 100%) < 10−6 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 < 10−6 < 10−6 < 10−6

δ(K5 ± 100%) 0 0 0 0 ∓8 × 10−6 0 0 ∓8 × 10−6 ∓8 × 10−6

δ(K6 ± 100%) 0 0 0 0 0 ±3 × 10−6 0 0 ±3 × 10−6

δ(ξ ± 0.63) – – – – – – +8.2
−4.1 × 10−6 +0.6

−3.7 × 10−6 +2.3
−0.5 × 10−6

than for FOPT, and hence to small theoretical uncertain-
ties.

3.3 Quark-mass and nonperturbative contributions

Following SVZ [39–41], the first contribution to Rτ beyond
the D = 0 perturbative expansion is the non-dynamical
quark-mass correction of dimension D = 2, i.e., correc-
tions scaling like 1/m2

τ . The leading D = 2 corrections in-
duced by the light-quark masses are computed using the
running quark masses evaluated at the two-loop level (de-
noted m in the following). The evaluation of the contour in-

tegral in FOPT [4] leads to terms δ
(2,mq)

ud,V/A ∝ m2
u,d(m2

τ )/m2
τ ,

mu(m
2
τ )md(m2

τ )/m2
τ , which are small.

The dimension D = 4 operators have dynamical contri-
butions from the gluon condensate 〈asGG〉 and the light u,d

quark condensates 〈miqiqi〉, which are the vacuum expecta-
tion values of the gluon field strength-squared and of the
scalar quark densities, respectively. The remaining D = 4
operators involve the running quark masses to the fourth
power. Solving the contour integral [4] results in terms
δ
(4)
ud,V/A ∝ α2

S
(m2

τ )〈asGG〉/m4
τ , 〈mqqq〉/m4

τ , O4(m
4
q/m4

τ ),
where remarkably the contribution from the gluon conden-
sate vanishes at the first order in αS(m

2
τ ).

The contributions from dimension D = 6 operators are
more delicate to analyse. The most important operators arise
from four-quark terms of the form qiΓ1qjqkΓ2ql . We ne-
glect other operators, such as the triple gluon condensate
whose Wilson coefficient vanishes at order αS , or those
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which are suppressed by powers of quark masses, in the
evaluation of the contour integrals performed in [4]. The
large number of independent operators of the four-quark
type occurring in the D = 6 term can be reduced by means
of the vacuum saturation assumption [39–41]. The opera-
tors are then expressed as products of (two-)quark conden-
sates αS(μ)〈qiqi(μ)〉〈qjqj (μ)〉. Since the scale dependence
of the four-quark and two-quark operators are different, such
factorization can hold for a specific value of the renormal-
ization scale (at best). To take into account this problem
as well as likely deviations from the vacuum saturation as-
sumption, one can introduce an effective parameter ρ (in
principle scale-dependent) to replace the four-quark contri-
bution by ραS〈qq〉2. The effective D = 6 term obtained in
this way is [4] δ

(6)
ud,V/A ∝ ραS〈qq〉2/m6

τ , with a relative fac-
tor of −7/11 between vector and axial vector contributions.

The D = 8 contribution has a structure of non-trivial
quark-quark, quark-gluon and four-gluon condensates
whose explicit form is given in [63]. For the theoretical
prediction of Rτ it is customary to absorb the whole long-
and short-distance parts into the scale invariant phenomeno-
logical D = 8 operator 〈O8〉, which is fit simultaneously
with αS and the other unknown nonperturbative operators.
Higher-order contributions from D ≥ 10 operators to Rτ

are expected to be small since, like in the case of the gluon
condensate, constant terms and terms in leading order in αS

vanish after integrating over the contour. We will not con-
sider these terms in the following.

3.4 Impact of quark-hadron duality violation

A matter of concern for the QCD analysis at the τ mass scale
is the reliability of the theoretical description, i.e., the use of
the OPE to organize the perturbative and nonperturbative ex-
pansions, and the control of unknown higher-order terms in
these series. A reasonable stability test consists in varying
mτ continuously to lower values

√
s0 ≤ mτ for both theo-

retical prediction and measurement, which is possible since
the shape of the full τ spectral function is available. This
test was successfully carried out [1, 25, 38] and confirmed
the validity of the approach down to s0 ∼ 1 GeV2 with an ac-
curacy of 1–2%. In this section, we consider a different test
of the sensitivity of the analysis to possible OPE violations.

The SVZ expansion provides a description of the correla-
tor Π (or of the Adler function D) for values of the incoming
momentum in the deep Euclidean region, based on the sepa-
ration between large and soft momenta flowing through the
diagrams associated to this correlator. If the OPE descrip-
tion were accurate, we could check the cogency of this de-
scription by performing an analytic continuation of the OPE
to any value of the momentum in the physical region and
comparing it with the spectral functions in Fig. 2. As seen

from these figures, perturbative QCD describes the asymp-
totic behavior of the functions, but fails to reproduce their
details.

The OPE suffers from a similar failure as can be ex-
pected from the intrinsic nature of the OPE procedure [39–
45]: it only yields a truncated expansion in the first powers
of 1/Q, i.e., the singularities near x = 0 of Πμν (cf. (3)).
Therefore, it misses singularities for finite x2 or x2 → ∞
related to long-distance effects. Even a large momentum q

flowing through the vacuum polarization diagrams may be
split into a soft quark-antiquark pair and soft gluons: this
physical possibility cannot be properly described by OPE,
since no separation can be performed between hard and
soft physics in such a situation. One expects for some of
these effects to yield terms proportional to exp(−λQ)/Qk

or exp(−λ2Q2)/Q� (where k, � are positive and λ is a typ-
ical hadronic distance), which are exponentially suppressed
in the deep Euclidean region and thus absent in the truncated
OPE series. But once these terms are continued analytically
along the branch cut, they generate a (power suppressed or
exponentially suppressed) oscillatory behavior of the spec-
tral function, which is similar to the one in Fig. 2. Such a
behavior is generally called “violation of local quark-hadron
duality”.

To determine Rτ , we compute the convolution of the OPE
expression of the Adler function with a kernel along the cir-
cle of radius s0. We know that duality violation will have a
small impact for the two regions close to the real axis (these
terms are exponentially suppressed in the Euclidean region,
and the kernel vanishes for s = s0). But to assess the system-
atic uncertainties related to the use of OPE, it is instructive—
even if very approximate—to simulate the contributions of
duality violating terms on the rest of the circle. For this pur-
pose, we use two different models proposed in [44], which
provide a coarse and rather qualitative description of such
effects (one of these models has been very recently recon-
sidered in [47] to investigate duality-violating effects on the
determination of nonperturbative condensates from ALEPH
data in the vector channel). In both cases, one does not aim
at a complete description of the correlator Π , but focuses on
the deviation between the full description and its truncated
OPE expansion �Π = Π − ΠOPE. In the first model (I )

the quarks propagate in an instanton background field with
a fixed size ρ, leading to the duality violation

�Π(I)(Q) = CI

Q2
K1(Qρ)K−1(Qρ), (27)

where the K(−)1 are modified Bessel functions of the second
kind. The second model (II ) mimics a comb of resonances
with a width that grows with the energy, so that they overlap
progressively when the energy increases

Π(II)(Q) = − 1

4π2

1

1 − B/3π

(
ψ(z) + 1

z

)
. (28)
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Here ψ(z) is the di-gamma function, and z =
(Q2/σ 2)1−B/3π , where σ parametrizes the offset between
the resonances, and B their (growing) widths. In this model,
one can define ΠOPE as the expansion in powers of 1/z

(up to z4 here, since we neglect operators of D = 10
and beyond). Duality violations are encoded in �Π(II) =
CII (Π − ΠOPE)(II ). The factors CI,II are normalization
constants.

One can check that the two models share the same fea-
tures: they are exponentially suppressed in the Euclidean
region, and exhibit a branch cut for time-like values of s,
such that they contribute to the spectral functions with oscil-
lations decreasing in amplitude when the energy increases.
They differ by the dependence of their oscillation frequency
on the energy: the instanton model oscillates like sin(

√
sρ),

while the resonance model varies like sin(s/σ ).
To investigate the numerical impact of quark-duality vi-

olation on our results, we vary for each model the parame-
ters and fix the normalization such that the imaginary part
of sum of the perturbative QCD computation and of the
duality-violating terms match smoothly the V + A spectral
function near s = m2

τ . We then compute the contribution of
the duality-violating part to δ(0) by performing the contour
integral (18). For the instanton model we asymptotically re-
produce the data for ρ values between 2.4 and 4.4 GeV−1,
leading to a contribution to δ(0) below 4.5 × 10−3. For the
resonance model we find values for σ 2 between 1.65 and
2 GeV2, and B between 0.3 and 0.6, leading to a contri-
bution to δ(0) below 7 × 10−4. These limits are however
quite conservative because the models used exhibit signif-
icant oscillations in the V + A spectral function. Although
allowed by the ALEPH data because of the larger error bars
close to the m2

τ endpoint, such oscillations are disfavored by
the overall pattern of the spectral function, with oscillation
amplitudes that are strongly suppressed above 1 GeV. Even
though these two models could be improved in many ways,
it is hard to see how their contributions to δ(0) could be en-
hanced by an order of magnitude such that they would in-
validate the OPE approach. At least in the case of the V +A

spectral function, we therefore expect the violation of quark-
hadron duality to have a negligible impact on our results. In
the next section, we will see that the induced error on δ(0) re-
mains well within the systematic uncertainties coming from
other sources.

4 Combined fit

Apart from the perturbative term, the full OPE contains con-
tributions of nonperturbative nature parametrized by higher-
dimensional operators, whose value cannot be computed
from first principles. It was shown in [5] that one can ex-
ploit the shape of the spectral functions via weighted inte-

grals to obtain additional constraints on αS(m
2
τ ) and—more

importantly—on the nonperturbative power terms.

4.1 Spectral moments

The τ spectral moments at s0 = m2
τ are defined by

Rk�
τ,V/A =

m2
τ∫

0

ds

(
1 − s

m2
τ

)k(
s

m2
τ

)� dRτ,V/A

ds
, (29)

where R00
τ,V/A = Rτ,V/A. Using the same argument of ana-

lyticity as for Rτ , one can reexpress (29) as a contour inte-
gral along the circle |s| = s0. The factor (1 − s/m2

τ )
k sup-

presses the integrand at s = m2
τ where the validity of the

OPE is less certain and the experimental accuracy is statis-
tically limited. Its counterpart (s/m2

τ )
� projects upon higher

energies. The spectral information is used to fit simultane-
ously αS(m

2
τ ) and the leading D = 4,6,8 nonperturbative

contributions. Due to the intrinsic experimental correlations
(all spectral moments rely on the same spectral function)
only four moments are used as input to the fit.

In analogy to Rτ (16), the contributions to the mo-
ments originating from perturbative QCD and nonperturba-
tive OPE terms are separated. The prediction of the pertur-
bative contribution takes the form

δ(0,k�) =
∞∑

n=1

K̃n(ξ)A(n,k�)(as), (30)

with the functions [1]

A(n,k�)(as) = 1

2πi

∮

|s|=m2
τ

ds

s

[
2Γ (3 + k)

×
(

Γ (1 + �)

Γ (4 + k + �)
+ 2

Γ (2 + �)

Γ (5 + k + �)

)

− I

(
s

s0
,1 + �,3 + k

)

− 2I

(
s

s0
,2 + �,3 + k

)]
an
s (−ξs), (31)

which make use of the elementary integrals I (γ, a, b) =∫ γ

0 ta−1(1 − t)b−1dt . The contour integrals are numerically
solved for the running as(−ξs) using the CIPT prescription.

In the chiral limit and neglecting the small logarithmic
s dependence of the Wilson coefficients, the dimension D

nonperturbative contributions δ
(D,k�)
ud,V/A to the spectral mo-

ments simplify greatly (cf. matrix (133) in [1]). One finds
that with increasing weight � the contributions from low di-
mensional operators vanish. For example, the only nonper-
turbative contribution to the moment R13

τ,V/A stems from di-
mension D = 8 and beyond (neglected).
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Table 3 Experimental
(D1�

τ,V/A) and theoretical

(D1� (theo)
τ,V/A , obtained after fit

convergence, cf. Sect. 4.2)
spectral moments of inclusive
vector (V ), axial-vector (A) and
vector plus axial-vector (V + A)

hadronic τ decays. The errors
�expD1�

τ,V/A summarize
statistical and systematic
uncertainties

� = 0 � = 1 � = 2 � = 3

D1�
τ,V 0.71668 0.16930 0.05317 0.02254

D
1� (theo)
τ,V 0.71568 0.16971 0.05327 0.02265

�expD1�
τ,V 0.00250 0.00043 0.00054 0.00041

D1�
τ,A 0.71011 0.14903 0.06586 0.03183

D
1� (theo)
τ,A 0.71660 0.14571 0.06574 0.03130

�expD1�
τ,A 0.00182 0.00063 0.00036 0.00025

D1�
τ,V +A 0.71348 0.15942 0.05936 0.02707

D
1� (theo)
τ,V +A 0.71668 0.15767 0.05926 0.02681

�expD1�
τ,V +A 0.00159 0.00037 0.00033 0.00025

Table 4 Experimental correlations between the moments Dk�
τ,V/A/V +A. Correlations between Rτ,V +A, determined from the leptonic τ branching

fractions, and the corresponding moments are negligible

D10
τ,V D11

τ,V D12
τ,V D13

τ,V D10
τ,A D11

τ,A D12
τ,A D13

τ,A D11
τ,V +A D12

τ,V +A D13
τ,V +A

Rτ,V −0.287 0.153 0.274 0.302 Rτ,A −0.255 0.013 0.178 0.272 D10
τ,V +A −0.722 −0.974 −0.987

D10
τ,V 1 −0.821 −0.981 −0.993 D10

τ,A 1 −0.746 −0.963 −0.978 D11
τ,V +A 1 0.801 0.662

D11
τ,V – 1 0.899 0.824 D11

τ,A – 1 0.866 0.646 D12
τ,V +A – 1 0.975

D12
τ,V – – 1 0.988 D12

τ,A – – 1 0.938

For practical purpose it is more convenient to define mo-
ments that are normalized to the corresponding Rτ,V/A to
decouple the normalization from the shape of the τ spectral
functions,

Dk�
τ,V/A = Rk�

τ,V/A

Rτ,V/A

. (32)

The two sets of experimentally almost uncorrelated observ-
ables—Rτ,V/A on one hand, and the moments Dk�

τ,V/A on

the other hand—yield independent constraints on αS(m
2
τ )

and thus provide an important test of consistency. The
correlation between these observables is negligible in the
V + A case where Rτ,V +A is calculated from the differ-
ence Rτ −Rτ,S , which is independent of the hadronic invari-
ant mass spectrum. One experimentally obtains the Dk�

τ,V/A

by integrating weighted normalized invariant mass-squared
spectra. The corresponding theoretical predictions are easily
adapted.

The measured V , A and (V + A) spectral moments and
their linear correlations matrices are given in Tables 3 and 4,
respectively. Also shown are the central values of the theory
prediction after fit convergence (cf. Sect. 4.2). The correla-
tions between the moments are computed analytically from
the contraction of the derivatives of two involved moments
with the covariance matrices of the respective normalized
invariant mass-squared spectra. In all cases, the negative

sign for the correlations between the k = 1, � = 0 and the
k = 1, � ≥ 1 moments is due to the ρ (V ) and the π , a1 (A)
peaks, which determine the major part of the k = 1, � = 0
moments. They are less prominent for higher moments and
consequently the amount of negative correlation increases
with � = 1,2,3. This also explains the large and increas-
ing positive correlations between the k = 1, � ≥ 1 moments,
in which, with growing �, the high energy tail is empha-
sized more than the low energy peaks. The total errors for
the (V + A) case are dominated by the uncertainties on the
hadronic branching fractions.

4.2 Fit results

Along the line of the previous analyses from ALEPH [1,
23, 38, 64], CLEO [24], and OPAL [25], we simultane-
ously determine αS(m

2
τ ), the gluon condensate, and the ef-

fective D = 6,8 nonperturbative operators from a combined
fit to Rτ and the spectral moments Dk�

τ,V/A with k = 1,
� = 0,1,2,3, taking into account the strong experimental
and theoretical correlations between them.

The fit minimizes the χ2 of the differences between mea-
sured and predicted quantities contracted with the inverse of
the sum of the experimental and theoretical covariance ma-
trices. The theoretical uncertainties include separate varia-
tions of the unknown higher-order coefficient K5, for which
the value/error K5 = K4(K4/K3) ≈ 378 ± 378 has been
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Table 5 Fit results for αS(m
2
τ ) and the nonperturbative contributions

for vector, axial-vector and V +A combined fits using the correspond-
ing experimental hadronic widths and spectral moments as input para-
meters, and using the CIPT prescription for the perturbative prediction.
Where two errors are given the first is experimental and the second the-

oretical. The δ(2) term comes from theoretical input on the light quark
masses varied within their allowed ranges (see text). The quark con-
densates in the δ(4) term are obtained from PCAC, while the gluon
condensate is determined by the fit. The total nonperturbative contri-
bution is the sum δNP = δ(4) + δ(6) + δ(8)

Parameter Vector (V ) Axial-Vector (A) V + A

αS(m
2
τ ) 0.3474 ± 0.0074+0.0063

−0.0074 0.3345 ± 0.0078+0.0063
−0.0074 0.3440 ± 0.0046+0.0063

−0.0074

δ(0) 0.2093 ± 0.0080 0.1988 ± 0.0087 0.2066 ± 0.0070

δ(2) (−3.2 ± 3.0) × 10−4 (−5.1 ± 3.0) × 10−4 (−4.3 ± 2.0) × 10−4

〈asGG〉 ( GeV4) (−0.8 ± 0.4) × 10−2 (−2.2 ± 0.4) × 10−2 (−1.5 ± 0.3) × 10−2

δ(4) (0.1 ± 1.5) × 10−4 (−5.9 ± 0.1) × 10−3 (−3.0 ± 0.1) × 10−3

δ(6) (2.68 ± 0.20) × 10−2 (−3.46 ± 0.21) × 10−2 (−3.7 ± 1.7) × 10−3

δ(8) (−8.0 ± 0.5) × 10−3 (9.5 ± 0.5) × 10−3 (8.1 ± 3.6) × 10−4

Total δNP (1.89 ± 0.25) × 10−2 (−3.11 ± 0.16) × 10−2 (−5.9 ± 1.4) × 10−3

χ2/DF 0.07 3.57 0.90

used, and of the renormalization scale. The latter quantity
has been varied within the range m2

τ ± 2 GeV2 (correspond-
ing to ξ = 1 ± 0.63), and the maximum variations of the ob-
servables found within this interval are assigned as system-
atic uncertainties (cf. Sect. 3.2.3). To avoid double counting
of errors the estimated K5 term has been fixed when vary-
ing ξ . The corresponding systematic errors for αS(m

2
τ ) are

0.0062 (K5) and +0.0007
−0.0040 (ξ ). The errors induced by the un-

certainties on SEW and |Vud | amount to 0.0007 and 0.0005,
respectively. With these inputs, the massless perturbative
contribution δ(0) is fully defined, and the parameter αS(m

2
τ )

can be determined by the fit.
Table 5 summarizes the results for the V , A and V + A

combined fits using CIPT. The δ(2) term is not determined by
the fit, but is fixed from a theoretical input on the light quark
masses varied within their errors [1]. The quark condensates
in the δ(4) term are obtained from partial conservation of the
axial-vector current (PCAC), while the gluon condensate is
determined by the fit, as are the higher-dimensional opera-
tors 〈O6〉 and 〈O8〉.

The advantage of separating the vector and axial-vector
channels and comparing to the inclusive V + A fit be-
comes obvious in the adjustment of the leading nonper-
turbative contributions of D = 6 and D = 8, which have
different signs for V and A and are thus suppressed in
the inclusive sum. The total nonperturbative contribution,
δNP = δ(4) + δ(6) + δ(8), from the V + A fit, although non-
zero, is significantly smaller than the corresponding values
from the V and A fits, hence increasing the confidence in the
αS(m

2
τ ) determination from inclusive V + A observables.

There is a remarkable agreement within statistical er-
rors between the αS(m

2
τ ) determinations using the vector

and axial-vector data, with α
(V )
S (m2

τ )−α
(A)
S (m2

τ ) = 0.013 ±

0.013, where the error takes into account the anticorrelation
in the experimental separation of the V and A modes. This
result provides an important consistency check since the two
corresponding spectral functions are experimentally almost
independent, they manifest a quite different resonant behav-
ior, and their fits yield relatively large nonperturbative con-
tributions compared to the V + A case. Contrary to the vec-
tor case, the axial-vector fit has a poor χ2 value originating
from a discrepancy between data and theory for the � = 0,1
normalized moments (cf. Table 3). Although the origin of
this discrepancy is unclear, it may indicate a shortcoming of
the OPE in form of noticeable inclusive duality violation in
this channel. The observed systematic effect on the αS(m

2
τ )

determination in this mode appears however to be within er-
rors. From the fit to the V +A τ spectral function, we obtain

αS(m
2
τ ) = 0.344 ± 0.005 ± 0.007, (33)

where the two errors are experimental and theoretical. The
values of the gluon condensate obtained in the V , A, and
V + A fits are not very stable. Despite the apparent sig-
nificance of the result for V + A, we prefer to enlarge
the error taking into account the discrepancies between the
V/A results. We find for the combined value 〈asGG〉 =
(−1.5 ± 0.8) × 10−2 GeV4, which is at variance with the
usual values quoted in the applications of SVZ sum rules.
We note however that not much is known from theoretical
grounds about the value of the gluon condensate [62].

The result (33) can be compared with the recent determi-
nation [6], αS(m

2
τ ) = 0.332 ± 0.005 ± 0.015, also at N3LO,

but using as experimental input only Rτ,V +A, and not in-
cluding the new information given in Sect. 2. Another major
difference with our analysis is that both perturbative proce-
dures, FOPT and CIPT, are considered on equal footing, and
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Fig. 7 Top: The evolution of
αS(m

2
τ ) to higher scales μ using

the four-loop RGE and the
three-loop matching conditions
applied at the heavy quark-pair
thresholds (hence the
discontinuities at 2mc and 2mb).
The evolution is compared with
independent measurements
(taken from the
compilation [65], and including
the recent measurements [66,
69]) covering μ scales that vary
over more than two orders
magnitude. Bottom: The
corresponding αS values
evolved to MZ . The shaded
band displays the τ decay result
within errors

their results are averaged. This leads to the lower value for
αS(m

2
τ ) and to an inflated theoretical error including half of

the discrepancy between the two prescriptions.
The evolution of the value (33) to M2

Z , using Runge-
Kutta integration of the four-loop β-function [54, 55], and
using three-loop quark-flavor matching [67, 68, 70–72],
gives

α
(τ)
S (M2

Z) = 0.1212 ± 0.0005 ± 0.0008 ± 0.0005,

= 0.1212 ± 0.0011. (34)

The first two errors in the upper line are propagated from
the αS(m

2
τ ) determination, and the last error summarizes un-

certainties in the evolution.10 All errors have been added in
quadrature for the second line. The result (34) is a determi-
nation of the strong coupling at the Z-mass scale with a pre-
cision of 0.9%, unattained by any other αS(M

2
Z) measure-

ment. The evolution path of αS(m
2
τ ) is shown in the upper

plot of Fig. 7 (the two discontinuities are due to the cho-
sen quark-flavor matching scale of μ = 2mq ). The evolu-
tion is compared in this plot with other αS determinations
compiled in [65] (we also included [69]), and with new
NNLO measurements based on hadronic event shapes from

10The evolution error [1] receives contributions from the uncertainties
in the c-quark mass (0.00020, mc varied by ±0.1 GeV) and the b-quark
mass (0.00005, mb varied by ±0.1 GeV), the matching scale (0.00023,
μ varied between 0.7mq and 3.0mq ), the three-loop truncation in the
matching expansion (0.00026) and the four-loop truncation in the RGE
equation (0.00031), where we used for the last two errors the size of
the highest known perturbative term as systematic uncertainty. These
errors have been added in quadrature.

e+e−annihilation covering the energy range between 91.2
and 206 GeV [66].

The theoretically most robust precision determination of
αS stems from the global fit to electroweak data at the Z-
mass scale. As for αS(m

2
τ ), this determination benefits from

the computation of the N3LO coefficient K4 occurring in
the radiator functions that predict the vector and axial-vector
hadronic widths of the Z (and also in the prediction of the
total W width). We use the newly developed Gfitter pack-
age [73] for the fit, and obtain

α
(Z)
S (M2

Z) = 0.1191 ± 0.0027 ± 0.0001. (35)

The value and first error represents the fit result, and the sec-
ond error is due to the truncation of the perturbative series.
It is estimated similarly to the τ case by adding a fifth-order
term proportional to K5, estimated by K4(K4/K3), to the
massless part, and a fourth-order term (estimated accord-
ingly), containing large logarithms ln(mt/MZ), to the mas-
sive part. We also vary the renormalization scale of the mass-
less contribution within the interval ξ = 1 ± 0.63, assuming
the fifth order coefficient to be known. The result (35) agrees
with the finding of [6].

The τ -based result (34) appears now twice more accu-
rate than the determination from the Z width. Yet the er-
rors are very different in nature with a τ value dominated
by theoretical uncertainties, whereas the determination at
the Z resonance, benefiting from the much larger energy
scale and the correspondingly small uncertainties from the
truncated perturbative expansion, is limited by the experi-
mental precision of the electroweak observables. The con-
sistency between the two results, α

(τ)
S (M2

Z) − α
(Z)
S (M2

Z) =
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0.0021 ± 0.0029, provides the most powerful present test
of the evolution of the strong interaction coupling as it is
predicted by the non-Abelian nature of QCD over a range
of s spanning more than three orders of magnitude. The
α

(τ)
S (M2

Z) determination agrees with the average of the three
currently most precise full NN(N)LO measurements (deep
inelastic scattering [65, 74], ALEPH event shapes between
91 and 206 GeV [66], and global electroweak fit at MZ),
yielding an average of 0.1189 ± 0.0015 (0.1204 ± 0.0009)
when not including (including) the τ result, which is jus-
tifiably assuming uncorrelated errors. The τ -based result
differs at the 2.5σ level from the value 0.1170 ± 0.0012
found in lattice QCD calculations with input from the mass
splitting of the Υ resonances [75]. The average of all five
values reduces the discrepancy to 2.1σ (χ2 probability
of 0.04).

5 Conclusions

We have revisited the determination of αS(m
2
τ ) from the

ALEPH τ spectral functions using recently available results.
On the experimental side, new BABAR measurements of the
e+e− annihilation cross section into KKπ using the radia-
tive return method now permit, through CVC, a much more
accurate determination of the vector/axial-vector fractions
in the corresponding τ decays. Also, better results are avail-
able on τ decays into strange final states from BABAR and
Belle. On the theory side, the first unknown term in the per-
turbative expansion of the Adler function, the fourth-order
term K4, was recently calculated, opening the possibility to
further push the accuracy of the theoretical analysis of the
hadronic τ decay rate.

Motivated by these improvements we have reexamined
the theoretical framework of the analysis. In particular the
convergence properties of the perturbative expansions for
the τ and Z hadronic widths have been studied, and the
ambiguity between the fixed-order (FOPT) and contour-
improved (CIPT) approaches for summing up the series has
been discussed. The study confirms our earlier findings (at
third order) that CIPT is the more reliable treatment. Fur-
thermore we have identified specific consistency problems
of FOPT, which do not exist in CIPT. Possible violations of
quark-hadron duality at the τ mass scale have been consid-
ered using specific models, and their effect has been found
to be well within our quoted overall theoretical uncertainty
(however, due to the coarseness of the models, we do not
introduce additional theoretical errors).

We perform a combined fit of the τ hadronic width and
hadronic spectral moments resulting in the value αS(m

2
τ ) =

0.344 ± 0.005exp ± 0.007theo, consistent with the previous
value obtained for three known orders, and with a 20% re-
duced theoretical uncertainty. This somewhat moderate im-
provement is the result of the relatively large value K4 ∼ 49,

suggesting a slowly converging perturbative series and giv-
ing rise to relatively large truncation uncertainties. Never-
theless, the result confirms the excellent accuracy that can
be obtained from the analysis of τ decays, albeit indicating
that this method may approach its ultimate accuracy.

The evolved τ result at the MZ scale, αS(M
2
Z) = 0.1212±

0.0005exp ±0.0008theo ±0.0005evol, is the most accurate de-
termination available. It agrees with the corresponding value
directly obtained from Z decays, which we have reevalu-
ated. Both determinations are so far the only results obtained
at N3LO order. They confirm the running of αS between
1.8 and 91 GeVas predicted by QCD with an unprecedented
precision of 2.4%.
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